Copied to
clipboard

G = C24.86D4order 128 = 27

41st non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.86D4, C23.8Q16, C4⋊C4.91D4, (C2×C8).45D4, (C2×Q8).91D4, C2.18(C8⋊D4), (C22×C4).148D4, C23.912(C2×D4), C2.32(D4⋊D4), C22.55(C2×Q16), C4.145(C4⋊D4), C22.4Q1624C2, C4.39(C4.4D4), (C22×C8).72C22, C22.218C22≀C2, C2.13(C8.18D4), C22.110(C4○D8), (C23×C4).274C22, C2.21(C22⋊Q16), C23.7Q8.19C2, (C22×Q8).64C22, C22.229(C4⋊D4), C22.137(C8⋊C22), (C22×C4).1446C23, C4.20(C22.D4), C2.9(C23.20D4), C2.6(C23.48D4), C2.9(C23.10D4), C22.126(C8.C22), C22.115(C22.D4), (C2×C2.D8)⋊8C2, (C2×Q8⋊C4)⋊14C2, (C2×C4).1038(C2×D4), (C2×C22⋊C8).27C2, (C2×C22⋊Q8).14C2, (C2×C4).773(C4○D4), (C2×C4⋊C4).121C22, SmallGroup(128,768)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C24.86D4
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.7Q8 — C24.86D4
C1C2C22×C4 — C24.86D4
C1C23C23×C4 — C24.86D4
C1C2C2C22×C4 — C24.86D4

Generators and relations for C24.86D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde3 >

Subgroups: 336 in 158 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, Q8⋊C4, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22×C8, C23×C4, C22×Q8, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×Q8⋊C4, C2×C2.D8, C2×C22⋊Q8, C24.86D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C2×Q16, C4○D8, C8⋊C22, C8.C22, C23.10D4, D4⋊D4, C22⋊Q16, C8.18D4, C8⋊D4, C23.48D4, C23.20D4, C24.86D4

Smallest permutation representation of C24.86D4
On 64 points
Generators in S64
(2 9)(4 11)(6 13)(8 15)(17 40)(18 47)(19 34)(20 41)(21 36)(22 43)(23 38)(24 45)(26 59)(28 61)(30 63)(32 57)(33 49)(35 51)(37 53)(39 55)(42 52)(44 54)(46 56)(48 50)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 40)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 49)(48 50)
(1 64)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 36 5 40)(2 20 6 24)(3 34 7 38)(4 18 8 22)(9 51 13 55)(10 48 14 44)(11 49 15 53)(12 46 16 42)(17 31 21 27)(19 29 23 25)(26 33 30 37)(28 39 32 35)(41 61 45 57)(43 59 47 63)(50 62 54 58)(52 60 56 64)

G:=sub<Sym(64)| (2,9)(4,11)(6,13)(8,15)(17,40)(18,47)(19,34)(20,41)(21,36)(22,43)(23,38)(24,45)(26,59)(28,61)(30,63)(32,57)(33,49)(35,51)(37,53)(39,55)(42,52)(44,54)(46,56)(48,50), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,5,40)(2,20,6,24)(3,34,7,38)(4,18,8,22)(9,51,13,55)(10,48,14,44)(11,49,15,53)(12,46,16,42)(17,31,21,27)(19,29,23,25)(26,33,30,37)(28,39,32,35)(41,61,45,57)(43,59,47,63)(50,62,54,58)(52,60,56,64)>;

G:=Group( (2,9)(4,11)(6,13)(8,15)(17,40)(18,47)(19,34)(20,41)(21,36)(22,43)(23,38)(24,45)(26,59)(28,61)(30,63)(32,57)(33,49)(35,51)(37,53)(39,55)(42,52)(44,54)(46,56)(48,50), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,5,40)(2,20,6,24)(3,34,7,38)(4,18,8,22)(9,51,13,55)(10,48,14,44)(11,49,15,53)(12,46,16,42)(17,31,21,27)(19,29,23,25)(26,33,30,37)(28,39,32,35)(41,61,45,57)(43,59,47,63)(50,62,54,58)(52,60,56,64) );

G=PermutationGroup([[(2,9),(4,11),(6,13),(8,15),(17,40),(18,47),(19,34),(20,41),(21,36),(22,43),(23,38),(24,45),(26,59),(28,61),(30,63),(32,57),(33,49),(35,51),(37,53),(39,55),(42,52),(44,54),(46,56),(48,50)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,40),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,49),(48,50)], [(1,64),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,36,5,40),(2,20,6,24),(3,34,7,38),(4,18,8,22),(9,51,13,55),(10,48,14,44),(11,49,15,53),(12,46,16,42),(17,31,21,27),(19,29,23,25),(26,33,30,37),(28,39,32,35),(41,61,45,57),(43,59,47,63),(50,62,54,58),(52,60,56,64)]])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N8A···8H
order12···2224444444···48···8
size11···1442222448···84···4

32 irreducible representations

dim11111112222222244
type++++++++++++-+-
imageC1C2C2C2C2C2C2D4D4D4D4D4C4○D4Q16C4○D8C8⋊C22C8.C22
kernelC24.86D4C22.4Q16C23.7Q8C2×C22⋊C8C2×Q8⋊C4C2×C2.D8C2×C22⋊Q8C4⋊C4C2×C8C22×C4C2×Q8C24C2×C4C23C22C22C22
# reps11112112212164411

Matrix representation of C24.86D4 in GL6(𝔽17)

100000
16160000
001000
0001600
000010
00001116
,
1600000
0160000
001000
000100
0000160
0000016
,
1600000
0160000
0016000
0001600
000010
000001
,
1600000
0160000
001000
000100
000010
000001
,
1500000
1490000
000100
0016000
00001416
0000103
,
8160000
1490000
0016000
000100
0000513
0000612

G:=sub<GL(6,GF(17))| [1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,11,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,14,0,0,0,0,0,9,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,14,10,0,0,0,0,16,3],[8,14,0,0,0,0,16,9,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,5,6,0,0,0,0,13,12] >;

C24.86D4 in GAP, Magma, Sage, TeX

C_2^4._{86}D_4
% in TeX

G:=Group("C2^4.86D4");
// GroupNames label

G:=SmallGroup(128,768);
// by ID

G=gap.SmallGroup(128,768);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,394,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations

׿
×
𝔽