p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.86D4, C23.8Q16, C4⋊C4.91D4, (C2×C8).45D4, (C2×Q8).91D4, C2.18(C8⋊D4), (C22×C4).148D4, C23.912(C2×D4), C2.32(D4⋊D4), C22.55(C2×Q16), C4.145(C4⋊D4), C22.4Q16⋊24C2, C4.39(C4.4D4), (C22×C8).72C22, C22.218C22≀C2, C2.13(C8.18D4), C22.110(C4○D8), (C23×C4).274C22, C2.21(C22⋊Q16), C23.7Q8.19C2, (C22×Q8).64C22, C22.229(C4⋊D4), C22.137(C8⋊C22), (C22×C4).1446C23, C4.20(C22.D4), C2.9(C23.20D4), C2.6(C23.48D4), C2.9(C23.10D4), C22.126(C8.C22), C22.115(C22.D4), (C2×C2.D8)⋊8C2, (C2×Q8⋊C4)⋊14C2, (C2×C4).1038(C2×D4), (C2×C22⋊C8).27C2, (C2×C22⋊Q8).14C2, (C2×C4).773(C4○D4), (C2×C4⋊C4).121C22, SmallGroup(128,768)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.86D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde3 >
Subgroups: 336 in 158 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C22⋊C8, Q8⋊C4, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22×C8, C23×C4, C22×Q8, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×Q8⋊C4, C2×C2.D8, C2×C22⋊Q8, C24.86D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C2×Q16, C4○D8, C8⋊C22, C8.C22, C23.10D4, D4⋊D4, C22⋊Q16, C8.18D4, C8⋊D4, C23.48D4, C23.20D4, C24.86D4
(2 9)(4 11)(6 13)(8 15)(17 40)(18 47)(19 34)(20 41)(21 36)(22 43)(23 38)(24 45)(26 59)(28 61)(30 63)(32 57)(33 49)(35 51)(37 53)(39 55)(42 52)(44 54)(46 56)(48 50)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 40)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 49)(48 50)
(1 64)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 36 5 40)(2 20 6 24)(3 34 7 38)(4 18 8 22)(9 51 13 55)(10 48 14 44)(11 49 15 53)(12 46 16 42)(17 31 21 27)(19 29 23 25)(26 33 30 37)(28 39 32 35)(41 61 45 57)(43 59 47 63)(50 62 54 58)(52 60 56 64)
G:=sub<Sym(64)| (2,9)(4,11)(6,13)(8,15)(17,40)(18,47)(19,34)(20,41)(21,36)(22,43)(23,38)(24,45)(26,59)(28,61)(30,63)(32,57)(33,49)(35,51)(37,53)(39,55)(42,52)(44,54)(46,56)(48,50), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,5,40)(2,20,6,24)(3,34,7,38)(4,18,8,22)(9,51,13,55)(10,48,14,44)(11,49,15,53)(12,46,16,42)(17,31,21,27)(19,29,23,25)(26,33,30,37)(28,39,32,35)(41,61,45,57)(43,59,47,63)(50,62,54,58)(52,60,56,64)>;
G:=Group( (2,9)(4,11)(6,13)(8,15)(17,40)(18,47)(19,34)(20,41)(21,36)(22,43)(23,38)(24,45)(26,59)(28,61)(30,63)(32,57)(33,49)(35,51)(37,53)(39,55)(42,52)(44,54)(46,56)(48,50), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,5,40)(2,20,6,24)(3,34,7,38)(4,18,8,22)(9,51,13,55)(10,48,14,44)(11,49,15,53)(12,46,16,42)(17,31,21,27)(19,29,23,25)(26,33,30,37)(28,39,32,35)(41,61,45,57)(43,59,47,63)(50,62,54,58)(52,60,56,64) );
G=PermutationGroup([[(2,9),(4,11),(6,13),(8,15),(17,40),(18,47),(19,34),(20,41),(21,36),(22,43),(23,38),(24,45),(26,59),(28,61),(30,63),(32,57),(33,49),(35,51),(37,53),(39,55),(42,52),(44,54),(46,56),(48,50)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,40),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,49),(48,50)], [(1,64),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,36,5,40),(2,20,6,24),(3,34,7,38),(4,18,8,22),(9,51,13,55),(10,48,14,44),(11,49,15,53),(12,46,16,42),(17,31,21,27),(19,29,23,25),(26,33,30,37),(28,39,32,35),(41,61,45,57),(43,59,47,63),(50,62,54,58),(52,60,56,64)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | C4○D4 | Q16 | C4○D8 | C8⋊C22 | C8.C22 |
kernel | C24.86D4 | C22.4Q16 | C23.7Q8 | C2×C22⋊C8 | C2×Q8⋊C4 | C2×C2.D8 | C2×C22⋊Q8 | C4⋊C4 | C2×C8 | C22×C4 | C2×Q8 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 6 | 4 | 4 | 1 | 1 |
Matrix representation of C24.86D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 11 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
15 | 0 | 0 | 0 | 0 | 0 |
14 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 16 |
0 | 0 | 0 | 0 | 10 | 3 |
8 | 16 | 0 | 0 | 0 | 0 |
14 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 13 |
0 | 0 | 0 | 0 | 6 | 12 |
G:=sub<GL(6,GF(17))| [1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,11,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,14,0,0,0,0,0,9,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,14,10,0,0,0,0,16,3],[8,14,0,0,0,0,16,9,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,5,6,0,0,0,0,13,12] >;
C24.86D4 in GAP, Magma, Sage, TeX
C_2^4._{86}D_4
% in TeX
G:=Group("C2^4.86D4");
// GroupNames label
G:=SmallGroup(128,768);
// by ID
G=gap.SmallGroup(128,768);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,394,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations